

H610M-X D5 Gen5 WiFi H610M-X D5 Gen5

主機板

軟體/BIOS 設定指南

1.0 版 2025 年 9 月出版 Copyright©2025 ASRock INC. 保留所有權利。 1.0版

2025年9月出版

Copyright©2025 ASRock INC. 保留所有權利。

版權聲明:

未經華擎書面同意,不得以任何語言、任何形式或透過任何方式複製、轉錄、傳播或 翻譯本文件的任何部分,購買者基於備份目的而複製文件除外。

本文件中出現的產品和公司名稱可能是其所屬公司的註冊商標或版權,僅用於識別或說明並且符合所有者的利益,無侵權意圖。

觅責聲明:

本文件中包含的規格和資訊僅供參考,如有變更,恕不另行通知,且不應被視為華擎的承諾。華擎對本文件中可能出現的任何錯誤或潰漏概不負責。

對於本文件的內容,華擎不提供任何明示或默示保證,包括但不限於適銷性或特定用 途適用性的默示保證或條件。

在任何情況下,華擎、其董事、主管、員工或代理商均不對任何間接、特殊、附帶性 或衍生性損害(包括利潤損失、業務損失、資料遺失、業務中斷等情況造成的損害) 負責,即使華擎已知悉可能因文件或產品中的任何瑕疵或錯誤而造成此類損害亦然。

聯絡資訊:

如需聯絡華擎或想要深入瞭解華擎,歡迎造訪華擎網站 http://www.asrock.com;您也可以聯絡經銷商,取得更多資訊。如有技術問題,請在 https://event.asrock.com/tsd.asp 提交支援要求表單

ASRock Incorporation

電子郵件: info@asrock.com.tw

ASRock EUROPE B.V.

電子郵件: sales@asrock.nl

ASRock America, Inc.

電子郵件: sales@asrockamerica.com

内容

第1	章 簡介	1
第 2 :	章 軟體和公用程式操作	2
2.1	Auto Driver Installer (ADI)	2
2.1.1	初次安裝驅動程式	2
2.1.2	更新驅動程式	6
2.2	ASRock Live Update & APP Shop	7
2.2.1	安裝 ASRock Live Update & APP Shop	7
2.2.2	UI 概述	8
2.2.3	Apps(應用程式)	9
2.2.4	BIOS or Drivers(BIOS 和驅動程式)	12
2.2.5	Setting(設定)	13
2.3	ASRock Motherboard Utility (A-Tuning)	14
2.3.1	安裝 ASRock Motherboard Utility (A-Tuning)	14
2.3.2	使用 ASRock Motherboard Utility (A-Tuning)	14
第3	章 UEFI 設定公用程式	17
3.1	簡介	17
3.1.1	進入 BIOS 設定	17
3.1.2	EZ Mode(EZ 模式)	18
3.1.3	Advanced Mode(進階模式)	19
3.1.4	UEFI 功能表列	19
3.1.5	導覽鍵	20
3.2	主畫面	21

3.3	OC Tweaker 畫面	22
3.4	Advanced(進階)畫面	40
3.4.1	CPU Configuration(CPU 設定)	42
3.4.2	Chipset Configuration(晶片組設定)	44
3.4.3	Storage Configuration(儲存裝置設定)	47
3.4.4	Super IO Configuration(Super IO 設定)	48
3.4.5	ACPI Configuration(ACPI 設定)	49
3.4.6	USB Configuration(USB 設定)	50
3.4.7	Trusted Computing(可信賴運算)	51
3.5	Tools(工具)	53
3.6	Hardware Health Event Monitoring(硬體狀態監控)畫面	54
3.7	Security(安全)畫面	56
3.8	Boot(開機)畫面	57
3.9	Exit(結束)畫面	59

第1章 簡介

本使用指南是 H610M-X D5 Gen5 WiFi / H610M-X D5 Gen5 主機板的完整設定指南。 本手冊中的螢幕擷取畫面,僅供參考。設定和選項可能因您購買的主機板而異。

在本文件中,第1章提供設定指南的概述。第2章包含軟體及公用程式的操作指南。 第3章包含 BIOS 組態設定指南。

軟體設定指南

- Auto Driver Installer (ADI)
- ASRock Live Update & APP Shop
- · ASRock Motherboard Utility (A-Tuning)

BIOS 設定指南

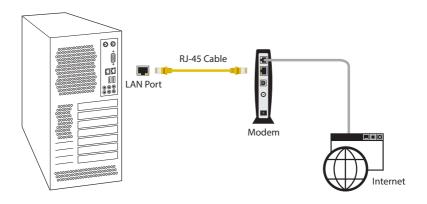
• UEFI 設定公用程式

由於主機板規格及軟體可能會更新,所以本文件內容如有變更,恕不另行通知。如本文 件有任何修改,可至華擎網站逕行取得更新版本,不另外通知。若您需要與本主機板相 關的技術支援,請上我們的網站瞭解有關您使用機型的特定資訊。華擎網站

http://www.asrock.com °

第2章 軟體和公用程式操作

2.1 Auto Driver Installer (ADI)


驅動程式安裝不再需要光碟機和驅動程式 DVD。華擎主機板已在 BIOS ROM 中,預 裝乙太網路驅動程式。作業系統安裝完畢後,只要使用 Auto Driver Installer 即可自動 下載,並安裝所有必要的驅動程式。

2.1.1 初次安裝驅動程式

請透過 Auto Driver Installer 依照指示安裝所有必要的驅動程式。 請注意,在下述程序中必須存取網際網路。

步驟 1

安裝 Windows 作業系統後,將電腦連線至網際網路。

開機進入系統,畫面右下角將顯示通知「Do you want to one-step-install the latest drivers simply from ASRock Auto Driver Installer? (是否要直接從 ASRock Auto Driver Installer 一步安裝最新驅動程式?)」。

選擇「Yes(是)」以安裝 Auto Driver Installer。 選擇「No(否)」以略過安裝。

- 1. 只有在 BIOS 中「工具」功能表下的「Auto Driver Installer」項目設為[敬用] 時, 才會自動顯示 Auto Driver Installer 供使用者安裝驅動程式。該項目預設為啟用:因 此,初次使用者不必變更 BIOS 中的設定。
- 2. 網際網路連線是使用 Auto Driver Installer 的先決條件。如果在沒有網際網路的情況 下開機進入系統,則不會出現 Auto Driver Installer。此時將電腦連線至網際網路, 等待幾秒,隨後將顯示 Auto Driver Installer。
- 3. 如果在步驟 2 中選擇「否」並略過安裝,則會移除 Auto Driver Installer。若要再次 執行應用程式,請啟用 BIOS 設定中的「Auto Driver Installer」項目。

步驟3

完成後,會在桌面上看到 Auto Driver Installer 圖示,隨後出現 Auto Driver Installer。

Auto Driver Installer 面板會列出主機板支援的所有驅動程式。選擇一或多個要安裝的驅動程式。

按一下「Select All(全選)」以選取所有項目。

按一下「Unselect All (取消全選)」以取消所有選擇。

按一下「Update(更新)」以開始下載並安裝驅動程式。

如果沒有要安裝的驅動程式,請按一下「完成」以退出。若要再次執行應用程式,請啟用 BIOS 設定中的「Auto Driver Installer」項目。

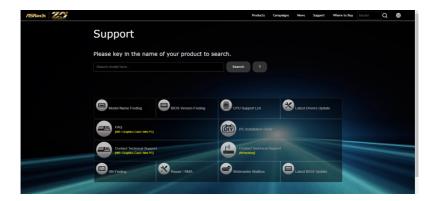
顯示訊息「During installation, your system may reboot and continue installing remaining item(s)(在安裝過程中,系統可能會重新開機,並繼續安裝剩餘項目)」。

按一下「Yes (是)」以繼續, 按一下「No (否)」以退出。

步驟6

成功安裝所有驅動程式後,顯示訊息「Installation has been successfully completed! (安裝成功!) For further drivers and utilities, please visit ASRock's website. (如需其他驅動程式和公用程式,請造訪華擎的網站。)」

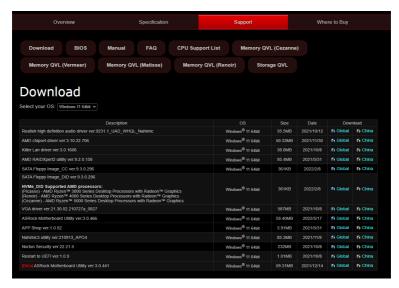
按一下「Ok(確定)」以完成程序。


完成驅動程式安裝後,將自動從電腦解除安裝 Auto Driver Installer 工具。

驅動程式安裝之後,將移除 Auto Driver Installer。若要再次執行應用程式,請在 BIOS 設定中前往「工具」功能表,將「Auto Driver Installer」項目設為 [啟用]。

2.1.2 更新驅動程式

更新驅動程式可確保系統正常運作,而無任何問題。若要更新驅動程式,請前往華擎的網站 (https://www.asrock.com),並選擇「Support(支援)」>「Latest Drivers Update(最新驅動程式更新)」。


2.2 ASRock Live Update & APP Shop

ASRock Live Update & APP Shop 是用於為華擎電腦購買和下載軟體應用程式的線上商店。您可以輕鬆快速地下載各種應用程式和支援公用程式。透過 ASRock Live Update & APP Shop,只要按幾下即可將系統最佳化,並讓主機板保持最新狀態。

2.2.1 安裝 ASRock Live Update & APP Shop

請從華擎的網站:「https://www.asrock.com」下載 ASRock Live Update & APP Shop 公用程式。

前往主機板的產品頁面,選擇「Support(支援)」>「Download(下載)」以下載APP Shop。

安裝後,在桌面上按兩下 👺 以存取 ASRock Live Update & APP Shop 公用程式。

^{*}必須連線至網際網路,才能從 ASRock Live Update & APP Shop 下載應用程式。

2.2.2 UI 概述

Category Panel (類別面板):類別面板包含多個類別索引標籤或按鈕,加以選取時,下方的資訊面板會顯示相關資訊。

Information Panel(資訊面板):中心的資訊面板顯示關於目前所選類別的資料,並允許使用者執行工作相關任務。

Hot News (熱門新聞): 熱門新聞區域顯示各種最新消息。按一下圖片可造訪所選新聞的網站並深入瞭解。

2.2.3 Apps (應用程式)

選擇「應用程式」索引標籤時,會在畫面上看到所有應用程式供您下載。

安裝應用程式

步驟1

尋找要安裝的應用程式。

最推薦的應用程式會出現在畫面左側。其他各種應用程式顯示在右側。請上下捲動以 瀏覽更多列出的應用程式。

您可以查看應用程式的價格以及是否已安裝。

- 📻 紅色圖示顯示價格,如果免費,則顯示「Free(免費)」。
- [ɒʊʊlled] 綠色「Installed(已安裝)」圖示,表示已在電腦上安裝該應用程式。

步驟 2


按一下應用程式圖示,以查看關於所選應用程式的詳細資訊。

若要安裝應用程式,請按一下紅色圖示 🔙 以開始下載。

步驟 4

安裝完成後,會看到綠色「Installed(已安裝)」圖示出現在右上角。

若要解除安裝,只要按一下垃圾桶圖示 🗓 即可。

* 某些應用程式可能不會出現垃圾桶圖示。

升級應用程式

只能升級已安裝的應用程式。應用程式有新版本時,會看到「New Version(新版本)」

Wessen 標記出現在已安裝應用程式圖示下方。

步驟 1

按一下應用程式圖示,以查看詳細資訊。

步驟 2

按一下黃色圖示 West 以開始升級。

2.2.4 BIOS or Drivers (BIOS 和驅動程式)

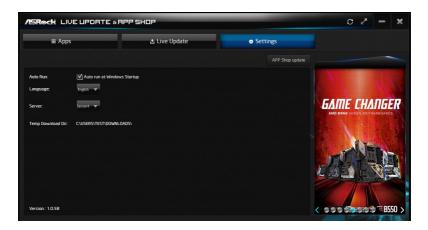
安裝 BIOS 或驅動程式

選擇「BIOS or Drivers(BIOS 和驅動程式)」索引標籤時,會看到 BIOS 或驅動程式 的建議更新、或重大更新清單。請盡快更新。

步驟1

更新前請檢查項目資訊。按一下 📦 以查看詳細資訊。

步驟 2


按一下以選取一或多個要更新的項目。

步驟3

按一下「Update(更新)」以開始更新程序。

2.2.5 Setting(設定)

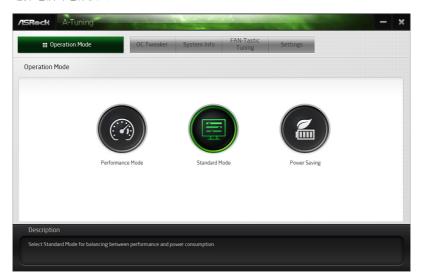
在「Setting(設定)」頁面中,您可以變更語言、選擇伺服器位置,以及決定是否要在 Windows 啟動時,自動執行 ASRock Live Update & APP Shop。

2.3 ASRock Motherboard Utility (A-Tuning)

ASRock Motherboard Utility (A-Tuning) 是華擎的多用途軟體套件,提供新的介面、更多新功能以及經過改良的公用程式。

2.3.1 安裝 ASRock Motherboard Utility (A-Tuning)

ASRock Motherboard Utility (A-Tuning) 可從 ASRock Live Update & APP Shop 下載。您也可以從華擎的網站:「https://www.asrock.com」。前往主機板的產品頁面,選擇「Support(支援)」>「Download(下載)」以下載「ASRock Motherboard Utility」。


安裝後,可在桌面上找到「ASRock Motherboard Utility (A-Tuning)」圖示。按兩下「ASRock Motherboard Utility (A-Tuning)」圖示 , 將顯示 ASRock Motherboard Utility (A-Tuning) 主功能表。

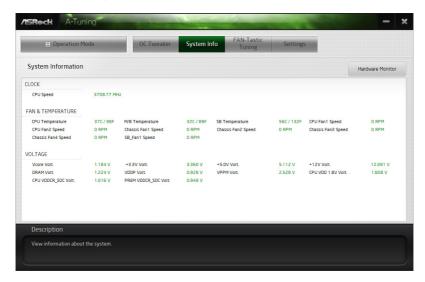
2.3.2 使用 ASRock Motherboard Utility (A-Tuning)

ASRock Motherboard Utility (A-Tuning) 主功能表中,有五個區域:Operation Mode (運作模式)、OC Tweaker、System Info(系統資訊)、FAN-Tastic Tuning 和 Settings(設定)。

Operation Mode(運作模式)

選擇電腦的運作模式。

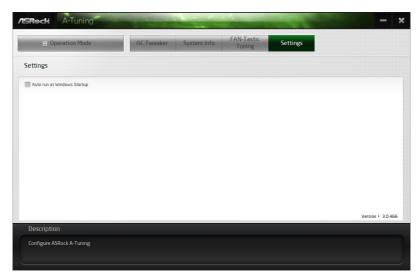
OC Tweaker


系統超頻的設定。

System Info(系統資訊)

檢視系統相關資訊。

* 某些型號可能不會出現系統瀏覽器索引標籤。


FAN-Tastic Tuning

使用圖表設定多達五種不同的風扇速度。符合指派的溫度時,風扇將自動轉為下一個速度等級。

Settings (設定)

設定 ASRock ASRock Motherboard Utility (A-Tuning)。若要在啟動 Windows 作業系統時,啟動 ASRock Motherboard Utility (A-Tuning),請按一下以選取「在 Windows 啟動時自動執行」。

第3章 UEFI 設定公用程式

3.1 簡介

ASRock UEFI (Unified Extensible Firmware Interface) 是一款 BIOS 公用程式,在進階檢視介面中,提供易於調整的選項。UEFI 系統與 USB 滑鼠相容,為使用者提供更快速、更流暢的體驗。

此 BIOS 公用程式可在系統啟動時,執行開機自我測試 (POST)、記錄系統的硬體參數、載入作業系統等等。主機板上的電池在系統電源關閉時,供應 CMOS 所需的電源,而在 UEFI 公用程式中設定的值保存在 CMOS 中。

請注意,不當的 BIOS 設定,可能導致系統不穩定、故障或開機失敗。強烈建議您不要修改 UEFI 預設設定,或僅在專業服務人員的協助下變更設定。

如果變更設定後,系統變得不穩定或無法開機,請嘗試清除 CMOS 值,並將機板重設 為預設值。請參閱主機板手冊中的說明。

3.1.1 進入 BIOS 設定

您可以在啟動電腦後,立即按 <F2> 或 執行 UEFI 設定公用程式;否則開機自 我測試 (POST) 將繼續執行測試常式。若要在 POST 後進入 UEFI 設定公用程式,請按 <Ctl> + <Alt> + <Delete> 或按系統機殼上的重設按鈕,以重新啟動系統。您也可先關 閉系統電源,再重新開啟以重新啟動。

本設定指南說明如何使用 UEFI 設定公用程式,設定所有支援的系統。本手冊中的螢幕擷取畫面,僅供參考。UEFI 設定和選項可能因不同的 BIOS 版本或安裝的 CPU 而異。關於詳細的畫面、設定和選項,請參閱您購買的主機板的實際 BIOS 版本。

3.1.2 EZ Mode(EZ 模式)

預設情況下,進入 BIOS 設定程式時,會出現 EZ 模式畫面。EZ 模式是包含多項讀數的儀表板,呈現系統的目前狀態。您可以檢查 CPU 速度、DRAM 頻率、SATA 資訊、風扇速度等最關鍵的系統資訊。

如需更多選項,請按 <F6> 或按一下畫面右上角的「Advanced Mode(進階模式)」 按鈕,切換至「Advanced Mode(進階模式)」。

3.1.3 Advanced Mode (進階模式)

進階模式提供更多選項,以配置 BIOS 設定。關於詳細的設定,請參閱以下各節。若要存取 EZ 模式,請按 <F6>或按一下畫面右上角的「EZ 模式」按鈕。

3.1.4 UEFI 功能表列

OC Tweaker

在書面最上方的功能表列共有下列選項:

 	Main ((主要)	適用於設定系統時間/	′日期資訊
---	--------	------	------------	-------

適用於超頻設定

Advanced	適用於進階系統設定
(進階)	週用於進陷亦机故处

Tool	(工具)	實用工具
1001	\ 上長 /	見/ルーデ

H/W Monitor	顯示目前的硬體狀態
(硬體顯示器)	級小目別的使起水忠

Security	適用於安全性設定
(安全性)	週用

Boot (開機) 適	用於設定開機設定及開機優先順序
-------------	-----------------

Exit(結束)	結束目前畫面或 UEFI 設定公用程式
----------	---------------------

因為 UEFI 軟體會持續更新,所以下列 UEFI 設定畫面及說明僅供參考,可能與最新的 BIOS 不同,並且與您在畫面上看到的不完全相同。

請務必理解,超頻可能產生某種程度的風險,其中包括調整 BIOS 中的設定、採用自由超頻技術或使用協力廠商的超頻工具。超頻可能會影響您系統的穩定性,或者甚至會對您系統的元件及裝置造成傷害。您應自行負擔超頻風險及成本,我們對於因超頻所造成的可能損害概不負責。

3.1.5 導覽鍵

使用 < ← > 鍵或 < → > 鍵選擇功能表列上的選項,再使用 < ↑> 鍵或 < ↓ > 鍵上下移動游標選擇項目,然後按下 <Enter> 進入子畫面。您也可使用滑鼠點選您所需的項目。

請核對下表,確認各導覽鍵的說明。

導覽鍵	說明
+ / -	變更選取項目的選項
<tab></tab>	切換至下一個功能
<pgup></pgup>	前往上一頁
<pgdn></pgdn>	前往下一頁
<home></home>	前往畫面最上方
<end></end>	前往畫面最下方
<f1></f1>	顯示一般說明畫面
<f7></f7>	捨棄變更並結束設定公用程式
<f9></f9>	在所有設定中,載入最佳預設設定值
<f10></f10>	儲存變更並結束設定公用程式
<f12></f12>	列印畫面
<esc></esc>	跳至結束畫面或結束目前的畫面

3.2 主畫面

當您進入 UEFI 設定公用程式時,主畫面將出現並顯示系統一覽。

BIOS 設定的可用性和位置,可能因型號和 BIOS 版本而異。

My Favorite(常用項目)

顯示您的 BIOS 項目集合。按 F5 新增/移除常用項目。

3.3 OC Tweaker 書面

在 OC Tweaker 畫面中,您可設定超頻功能。

CPU Turbo 倍頻資訊

此選項將使 CPU 預設,以較高的 vcore 運作。CPU 在預設設定下不穩定時,請嘗試調整此選項。等級越高, vcore 就越高。

因為 UEFI 軟體會持續更新,所以下列 UEFI 設定畫面及說明僅供參考,可能會與您 在畫面上看到的不完全相同。

CPU Configuration (CPU 設定)

CPU Turbo Ratio Information (CPU Turbo 倍頻資訊)

此項目可讓使用者瀏覽 CPU Turbo 倍頻資訊。

CPU Configuration (CPU 設定)

CPU P-Core Ratio (CPU P-Core 倍頻)

CPU 速度取決於 CPU P-Core 倍頻乘以 BCLK。提高 CPU P-Core 倍頻將提高內部 CPU 時脈速度,不影響其他元件的時脈速度。

CPU Cache Ratio (CPU 快取率)

CPU 內部匯流排速率。最大值應與 CPU 倍頻相同。

Min Cache Ratio (最小快取率)

CPU 內部匯流排最小速率。若要針對非 K CPU 使快取率與 P-Core 倍頻一致,您可以嘗試將最小快取率限制與 CPU 快取率同步。

BCLK Aware Adaptive Voltage(BCLK 感知適應性電壓)

BCLK 感知適應性電壓啟用/停用。啟用後,pcode 將在計算 CPU V/F 曲線時,感知 BCLK 頻率。這適合 BCLK OC 以避免高電壓覆寫。

Boot Performance Mode (提升效能模式)

預設值為最大非渦輪效能模式。將保持 CPU Flex 比率,直到 OS 遞交。最大電池模式會將 CPU 倍頻設為 x8,直到 OS 遞交。建議將此選項用於 BCLK 超頻。

Ring to Core Ratio Offset (環形與核心比率偏移)

停用環形與核心比率偏移,使環形與核心能以相同頻率運作。

SA PLL Frequency Override (SA PLL 頻率覆寫)

設定 SA PLL 頻率。

BCLKTSC HW Fixup (BCLKTSC HW 修復)

從PMA到APIC的TSC複製期間,BCLKTSCHW修復停用。

Intel SpeedStep Technology

Intel SpeedStep 技術允許處理器在多項頻率及電壓點之間切換,以獲得最佳省電及散熱效率。Intel SpeedStep 技術設為停用、且 Intel 渦輪加速技術設為啟用時,可固定 CPU Turbo 倍頻。

Intel Turbo Boost Technology (Intel 渦輪加速模式 (Turbo Boost) 技術)

操作系統要求最高效能狀態時,Intel 渦輪加速模式 (Turbo Boost) 技術可讓處理器以基本頻率以上執行。

Intel Speed Shift Technology(Intel Speed Shift 技術)

讓您啟用或停用 Intel Speed Shift 技術支援。啟用將開放 CPPC v2 介面,以允許硬體控制 P 狀態。若要獲得對 Intel Turbo Boost Max 技術 3.0 (ITBMT 3.0) 的最佳支援,必須啟用 Intel Speed Shift 技術。如果 CPU 不支援 ITMBT 3.0,選項將仍然呈灰色。

Intel Turbo Boost Max Technology 3.0(Intel Turbo Boost Max 技術 3.0)

啟用/停用 Intel Turbo Boost Max 技術 3.0 (ITBMT 3.0) 支援。停用將報告 _CPC 物件中最慢核心的最大比率。支援 ITTBMT 3.0 功能的處理器,至少包含一個最大比率高於其他核心的處理器核心。

Intel Dynamic Tuning Technology

啟用/停用 Intel Dynamic Platform Thermal Framework

Intel Thermal Velocity Boost Voltage Optimizations(Intel Thermal Velocity Boost 電壓最佳化)

此服務可針對具備 Intel Thermal Velocity Boost (TVB) 功能的處理器控制,以熱為基礎的電壓最佳化。

Long Duration Power Limit(長時間功耗限制)

以瓦特為單位設定封裝功耗限制 1。超出限制時,CPU 倍頻在經過一段時間後將變低。下限可保護 CPU 並節省功率,而上限則可改善效能。

Long Duration Maintained(長時間持續時間)

設定超出長時間功耗限制時,直到 CPU 倍頻變低的時間長度。

Short Duration Power Limit (短時間功耗限制)

以瓦特為單位設定封裝功耗限制 2。超出限制時,CPU 倍頻將立即變低。下限可保 護 CPU 並節省功率,而上限則可改善效能。

CPU Core Unlimited Current Limit (CPU 核心無限電流限制)

若要完全解鎖電壓調節器電流限制,您可以將此選項設為啟用。

CPU Core Current Limit (CPU 核心電流限制)

電壓調節器電流限制。此值表示在任何時間允許的最大瞬時電流。

GT Current Limit(GT 電流限制)

電壓調節器電流限制。此值表示在任何時間允許的最大瞬時電流。使用內建顯示卡時,會出現此項目。

IA CEP Enable(IA CEP 啓用)

啟用/停用 IA CEP (Current Excursion Protection) 支援。使用 pCode 信箱命令 0x37、子命令 0x1。將資料 bit2 設為 1。

GT CEP Enable(GT CEP 啓用)

啟用/停用 GT CEP (Current Excursion Protection) 支援。使用 pCode 信箱命令 0x37、子命令 0x1。將資料 bit3 設為 1。

DRAM Configuration (DRAM 設定)

Memory Information (記憶體資訊)

讓使用者瀏覽記憶體模組的序列,存在偵測 (SPD) 與 Intel Extreme Memory Profile (XMP)。

DRAM Timing Configuration(DRAM 時脈設定)

DRAM Reference Clock (DRAM 參考時脈)

選擇自動,自動取得最佳設定。

DRAM Frequency (DRAM 頻率)

若選擇 [Auto] (自動),主機板將偵測記憶體模組是否插入,並自動指派適合的頻率。

DRAM Gear Mode (DRAM Gear 模式)

高檔位適合高頻率。

Primary Timing(主要時序)

CAS# Latency (tCL) (CAS# 延遲 (tCL))

傳送行位址至記憶體與資料開始回應之間的時間。

RAS#至CAS#延遲(tRCD)

RAS# 至 CAS# 延遲:在開啟記憶體列及存取記憶體行之間所需的時脈週期數。

RAS#至CAS#延遲寫入(tRCDW)

RAS#至 CAS#延遲寫入:在開啟記憶體列及存取記憶體行之間所需的時脈週期數。

列預充電 (tRP)

在發佈預充電命令及下一列開啟之間所需的時脈週期。

RAS# Active Time (tRAS)(RAS# 啓用時間 (tRAS))

在 bank active 命令與發佈預充電命令之間所需的時脈週期。

Command Rate (CR) (命令速率 (CR))

在選取記憶體晶片時以及可發佈首次啟動命令時之間的延遲。

Secondary Timing(次要時序)

Write Recovery Time (tWR)(寫入恢復時間 (tWR))

在可預充電 active bank 之前,完成有效寫入作業後必須經過的延遲時間。

Refresh Cycle Time 2 (tRFC2) (重新整理週期時間 2 (tRFC2))

從 Refresh(重新整理)命令直到發佈第一個 Activate(啟動)命令至相同次序的時脈 數。

Refresh Cycle Time per Bank (tRFCpb)(每記憶庫重新整理週期時間 (tRFCpb))

每記憶庫重新整理命令完成所需的時脈數。

RAS to RAS Delay (tRRD_L)(RAS 至 RAS 延遲 (tRRD_L))

在相同次序不同組別中啟動的兩列間時脈數。

RAS to RAS Delay (tRRD_S)(RAS 至 RAS 延遲 (tRRD_S))

在相同次序不同組別中啟動的兩列間時脈數。

Write to Read Delay (tWTR_L)(寫入到讀取延遲 (tWTR_L))

在相同內部組別中的上次有效寫入作業及下次讀取命令之間的時脈數。

Write to Read Delay (tWTR_S)(寫入到讀取延遲 (tWTR_S))

在相同內部組別中的上次有效寫入作業及下次讀取命令之間的時脈數。

Read to Precharge (tRTP) (讀取到預充電 (tRTP))

在相同次序中,於讀取命令至列預充電命令之間插入的時脈數。

Four Activate Window (tFAW) (四啓動視窗 (tFAW))

在相同次序中允許的四個啟動時間視窗。

CAS Write Latency (tCWL)(CAS 寫入延遲 (tCWL))

設定 CAS 寫入延遲。

Third Timing(第三時序)

tREFI

以平均週期間隔設定重新整理週期。

tCKE

設定 DDR5 一進入自我重新整理模式後,在內部啟動最少單一重新整理命令的時間 長度。

tRC

設定最小 active 至 active / 重新整理時間。

Fourth Timing(第四時序)

JEDEC Extended Timing(JEDEC 延伸時序)

選擇啟用以針對 tXSDLL 和 tCCD_L/tDLLK 套用 JEDEC 延伸時序。這可能對某些記憶體的高頻率有幫助。

tXSDLL

設定 tXSDLL。

tCCDD L/tDLLK

 $tCCD_L/tDLLK\n0\ 2000 < F <= 2100\ F=3200\n1\ 3200 < F <= 3600\n2\ 3600 < F <= 4000\n3\ 4000 < F <= 4400\n4\ 4400 < F <= 4800\n5\ 4800 < F <= 5200\n6\ 5200 < F <= 5600\n7\ 5600 < F <= 6000\n8\ 6000 < F <= 6400\n$ 保留所有其他編碼。

tRPRE

設定 tRPRE。

tWPRF

設定 tWPRE。

tRPOST

設定 tRPOST。

tWPOST

設定 tWPOST。

tZOOPER

設定 tZQOPER。

tMOD.

設定 tMOD。

tXSR

設定 tXSR。

tSR

設定 tSR。

tZOCSPeriod

設定 tZQCSPeriod。

tZQCS

設定 tZQCS。

tZQCAL

設定 tZQCAL。

tCAL

設定 tCAL。

tCSCKEH

設定 tCSCKEH。

tCKCKEH

設定 tCSCKEH。

tCPDED

設定 tCPDED。

Power Down Timing(電源關閉時序)

tXP

設定 tXP。

tXPDLL

設定 tXPDLL。

tCSH

設定 tCSH。

tCSL

設定 tCSL。

tCA2CS

設定 tCA2CS。

tPRPDEN

設定 tPRPDEN。

tRDPDEN

設定 tRDPDEN。

tWRPDEN

設定 tWRPDEN。

Pre Act ODT Timing(行動前 ODT 時序)

tRDPRE

設定 tRDPRE。

tPPD

設定 tPPD。

tWRPRE

設定 tWRPRE。

tAONPD

設定 tAONPD。

Turn Around Timing(轉迴時序)

Turn Around Timing Optimization (轉迴時序最佳化)

在一般情況下, 啟用自動。

TAT Training Value(TAT 訓練値)

tRDRD_sg

在模組讀取至讀取延遲之間設定。

tRDRD dq

在模組讀取至讀取延遲之間設定。

tRDRD_dr

在模組讀取至讀取延遲之間設定。

tRDRD_dd

在模組讀取至讀取延遲之間設定。

tRDWR_sg

在模組讀取至寫入延遲之間設定。

tRDWR_dg

在模組讀取至寫入延遲之間設定。

tRDWR dr

在模組讀取至寫入延遲之間設定。

tRDWR dd

在模組讀取至寫入延遲之間設定。

tWRRD_sg

在模組寫入至讀取延遲之間設定。

tWRRD_dg

在模組寫入至讀取延遲之間設定。

tWRRD dr

在模組寫入至讀取延遲之間設定。

tWRRD dd

在模組寫入至讀取延遲之間設定。

tWRWR_sg

在模組寫入至寫入延遲之間設定。

tWRWR_dg

在模組寫入至寫入延遲之間設定。

tWRWR dr

在模組寫入至寫入延遲之間設定。

tWRWR dd

在模組寫入至寫入延遲之間設定。

TAT Runtime Value(TAT 執行階段值)

tRDRD sq

tCK 週期中從讀取至讀取到同一記憶庫群組的最小延遲。

tRDRD dg

tCK 週期中從讀取至讀取到不同記憶庫群組的最小延遲。

tRDRD dr

tCK 週期中從讀取至讀取到同一 DIMM 中,其他記憶庫的最小延遲。

tRDRD dd

tCK 週期中從讀取至讀取到其他 DIMM 的最小延遲。

tRDWR_sg

tCK 週期中從讀取至寫入到同一記憶庫群組的最小延遲。

tRDWR da

tCK 週期中從讀取至寫入到不同記憶庫群組的最小延遲。

tRDWR dr

tCK 週期中從讀取至寫入到同一 DIMM 中,其他記憶庫的最小延遲。

tRDWR dd

tCK 週期中從讀取至寫入到其他 DIMM 的最小延遲。

tWRRD sq

tCK 週期中從寫入至讀取到同一記憶庫群組的最小延遲。

tWRRD_dg

tCK 週期中從寫入至讀取到不同記憶庫群組的最小延遲。

tWRRD dr

tCK 週期中從寫入至讀取到同一 DIMM 中,其他記憶庫的最小延遲。

tWRRD dd

tCK 週期中從寫入至讀取到其他 DIMM 的最小延遲。

tWRWR sq

tCK 週期中從寫入至寫入到同一記憶庫群組的最小延遲。

tWRWR da

tCK 週期中從寫入至寫入到不同記憶庫群組的最小延遲。

tWRWR dr

tCK 週期中從寫入至寫入到同一 DIMM 中,其他記憶庫的最小延遲。

tWRWR dd

tCK 週期中從寫入至寫入到其他 DIMM 的最小延遲。

Round Trip Timing(往返時序)

Round Trip Timing Optimization(往返時序最佳化)

在一般情況下, 啟用自動。

Round Trip Level(往返等級)

設定往返等級。

Initial RTL IO Delay Offset (初始 RTL IO 延遲偏移)

設定往返延遲 IO 延遲初始偏移。

Initial RTL FIF0 Delay Offset(初始 RTL FIF0 延遲偏移)

設定往返延遲 FIFO 延遲初始偏移。

Initial RTL (MC0 C0 A1) (初始 RTL (MC0 C0 A1))

設定往返延遲初始值。

Initial RTL (MC0 C1 A1) (初始 RTL (MC0 C1 A1))

設定往返延遲初始值。

Initial RTL (MC1 C0 B1)(初始 RTL (MC1 C0 B1))

設定往返延遲初始值。

Initial RTL (MC1 C1 B1) (初始 RTL (MC1 C1 B1))

設定往返延遲初始值。

RTL (MC0 C0 A1)

設定往返延遲。

RTL (MC0 C1 A1)

設定往返延遲。

RTL (MC1 C0 B1)

設定往返延遲。

RTL (MC1 C1 B1)

設定往返延遲。

ODT Setting (ODT 設定)

Dimm ODT Training (Dimm ODT 訓練)

Dimm 晶片內部端接訓練,此訓練會將 ODT 值最佳化。

ODT WR (A1)

為通道 A1 設定記憶體晶片內部終端電阻器的 WR。

ODT WR (B1)

為通道 B1 設定記憶體晶片內部終端電阻器的 WR。

ODT NOM Rd (A1)

設定記憶體晶片內部端接電阻器的 NOM Rd。

ODT NOM Rd (B1)

設定記憶體晶片內部端接電阻器的 NOM Rd。

ODT NOM Wr (A1)

設定記憶體晶片內部端接電阻器的 NOM Wr。

ODT NOM Wr (B1)

設定記憶體晶片內部端接電阻器的 NOM Wr。

ODT PARK (A1)

設定記憶體晶片內部端接電阻器的 PARK。

ODT PARK (B1)

設定記憶體晶片內部端接電阻器的 PARK。

ODT PARK DQS (A1)

設定記憶體晶片內部端接電阻器的 PARK DQS。

ODT PARK DQS (B1)

設定記憶體晶片內部端接電阻器的 PARK DQS。

ODT CA (A1 Group A) (ODT CA (A1 群組 A))

設定記憶體晶片內部端接電阻器的 CA。

ODT CA (B1 Group A) (ODT CA (B1 群組 A))

設定記憶體晶片內部端接電阻器的 CA。

ODT CA (A1 Group B) (ODT CA (A1 群組 B)) 設定記憶體晶片內部端接電阻器的 CA。 ODT CA (B1 Group B) (ODT CA (B1 群組 B)) 設定記憶體晶片內部端接電阻器的 CA。 ODT CS (A1 Group A) (ODT CS (A1 群組 A)) 設定記憶體晶片內部端接電阻器的 CS。 ODT CS (B1 Group A) (ODT CS (B1 群網 A)) 設定記憶體晶片內部端接電阻器的 CS。 ODT CS (A1 Group B) (ODT CS (A1 群組 B)) 設定記憶體晶片內部端接電阻器的 CS。 ODT CS (B1 Group B) (ODT CS (B1 群組 B)) 設定記憶體晶片內部端接電阻器的 CS。 ODT CK (A1 Group A) (ODT CK (A1 群組 A)) 設定記憶體晶片內部端接電阻器的 CK。 ODT CK (B1 Group A) (ODT CK (B1 群組 A)) 設定記憶體晶片內部端接電阻器的 CK。 ODT CK (A1 Group B) (ODT CK (A1 群組 B)) 設定記憶體晶片內部端接電阻器的 CK。

ODT CK (B1 Group B)(ODT CK(B1 群組 B))

設定記憶體晶片內部端接電阻器的 CK。

Pull Up Output Driver Impedance MCO(上拉輸出驅動器阻抗 MCO) 設定 DRAM A1 A2 MRS MR5 OP[2:1] 的上拉輸出驅動器阻抗。

Pull Up Output Driver Impedance MC1(上拉輸出驅動器阻抗 MC1) 設定 DRAM B1 B2 MRS MR5 OP[2:1] 的上拉輸出驅動器阻抗。

Pull Down Output Driver Impedance MC0(下拉輸出驅動器阻抗MC0)

設定 DRAM A1 A2 MRS MR5 OP[7:6] 的下拉輸出驅動器阻抗。

Pull Down Output Driver Impedance MC1(下拉輸出驅動器阻抗MC1)

設定 DRAM B1 B2 MRS MR5 OP[7:6] 的下拉輸出驅動器阻抗。

Advanced Setting(進階設定)

ASRock Timing Optimization(ASRock 時序最佳化)

啟用/停用 ASRock 時序最佳化。啟用時,記憶體時序將使用 ASRock 最佳化值。

ASRock DRAM Frequency Optimization(ASRock DRAM 頻率最佳化)

啟用/停用 ASRock DRAM 時序最佳化。啟用時,DRAM 頻率將執行 ASRock 最佳化 程序。

MRC Training Respond Time(MRC 訓練回應時間)

嘗試最慢的 MRC 訓練。

Realtime Memory Timing (即時記憶體時序)

啟用/停用即時記憶體時序。啟用時,系統將在 MRC_DONE 之後,允許執行即時記憶體時序變更。

SDRAM Die Density(SDRAM 晶粒密度)

選擇 MRC 的 SDRAM 晶粒密度。

DCC 最佳化)

設定 DCC 最佳化選項。

Controller 0, Channel 0 Control (控制器 0,通道 0控制)

啟用/停用控制器 0,通道 0。

Controller 0, Channel 1 Control (控制器 0,通道 1控制)

啟用/停用控制器 0,通道 1。

Controller 1, Channel 0 Control(控制器 1,通道 0 控制)

啟用/停用控制器1, 誦道0。

Controller 1, Channel 1 Control (控制器 1,通道 1控制)

啟用/停用控制器1,通道1。

Reset for MRC Failed(MRC 重設失敗)

MRC 訓練失敗後重設系統。

MRC Training on Warm Boot(MRC 暖開機訓練)

啟用後,將在暖開機時,執行記憶體訓練。

MRC Fast Boot (MRC 快速開機)

敢用時,將盡可能略過部分的記憶體參考碼,以加快開機速度。

Voltage Configuration (電壓設定)

CPU Core/Cache Voltage(CPU 核心/快取電壓)

由外部電壓調節器輸入處理器的電壓。

CPU GT Load-Line Calibration (CPU CORE / 快取負載線路校正)

CPU 核心/快取負載線路校正有助於防止 CPU 核心/快取電壓,在系統處於重度負載時驟降。

CPU GT Voltage (CPU GT 電壓)

由外部電壓調節器輸入處理器的電壓。

CPU Core/Cache Load-Line Calibration(CPU GT 負載線路校正)

CPU GT 負載線路校正有助於防止 GT 電壓在系統處於重度負載時驟降。

VDD_CPU Voltage(VDD_CPU 電壓)

讓您設定 CPU I/O 至記憶體的 VDD_CPU 電壓。

VDD MRC Voltage (VDD MRC 電壓)

讓您設定 MRC 訓練和計算的 VDD_MRC 電壓。

+1.05V PROC Voltage(+1.05V PROC 電壓)

設定 +1.05V PROC 的電壓。

VCCIN AUX Voltage (VCCIN AUX 電壓)

設定 VCCIN AUX 的電壓。

+0.82V PCH Voltage(+0.82V PCH 電壓)

設定 +0.82V PCH 的電壓。

+1.05 PCH Voltage(+1.05 PCH 電壓)

設定 +1.05 PCH 的電壓。

Memory PMIC Configuration (記憶體 PMIC 設定)

PMIC Voltage Option (PMIC 電壓選項)

[統一] 讓您全面調整 DIMM PMIC。 [分離] 讓您個別調整 DIMM PMIC。

VDD Voltage (VDD 電壓)

讓您設定 DRAM 側 PMIC 支援的 VDD 電壓。可透過 PMIC ADC 測量 VDD 輸出,步 距為 0.015V。VDD 資訊包含在記憶體 SPD 和 XMP 中,您可以透過記憶體資訊工具加 以香看。

VDD Voltage Range(VDD 電壓範圍)

JEDEC 標準範圍從 0.800V 到 1.435V。OC 需求範圍從 0.800V 到 2.070V。如果 PMIC OC CAP 是 JEDEC PMIC,可能不會套用 OC 需求。您可以透過記憶體資訊工具加以 查看。

設定選項: [JEDEC 標準] [OC 需求]

VDDQ Voltage (VDDQ 電壓)

讓您設定 DRAM 側 PMIC 支援的 VDDQ 電壓。可透過 PMIC ADC 測量 VDDQ 輸出,步距為 0.015V。VDDQ 資訊包含在記憶體 SPD 和 XMP 中。您可以透過記憶體資訊工具加以查看。

設定選項: [JEDEC 標準] [OC 需求]

VDDQ Voltage Range(VDDQ 電壓範圍)

JEDEC 標準範圍從 0.800V 到 1.435V。OC 需求範圍從 0.800V 到 2.070V。如果 PMIC OC CAP 是 JEDEC PMIC,可能不會套用 OC 需求。您可以透過記憶體資訊工具加以查看。

設定選項: [JEDEC 標準] [OC 需求]

VPP Voltage(VPP 電壓)

讓您設定 DRAM 側 PMIC 支援的 VPP 電壓。可透過 PMIC ADC 測量 VPP 輸出,步距為 0.015V。VPP 資訊包含在記憶體 SPD 和 XMP 中。您可以透過記憶體資訊工具加以 香看。

VDD Eventual Voltage(VDD 最終電壓)

VDD Eventual Voltage(VDD 最終電壓)

讓您設定最終 VDD 電壓。

VDDQ Eventual Voltage(VDDQ 最終電壓)

讓您設定最終 VDDQ 電壓。

VPP Eventual Voltage (VPP 最終電壓)

讓您設定最終 VPP 電壓。

Current Limiter VDD (電流限制器 VDD)

讓您配置輸出電流限制器警告閾值設定。

Current Limiter VDDQ(電流限制器 VDDQ)

讓您配置輸出電流限制器警告閾值設定。

Current Limiter VPP(電流限制器 VPP)

讓您配置輸出電流限制器警告閾值設定。

AVX Configuration (AVX 配置)

AVX2 Voltage Guardband Scale Factor(AVX2 電壓保護頻段比例因數)

AVX2 電壓保護頻段比例因數,可控制套用至 AVX2 工作負載的電壓保護頻段。> 1.00 的值將擴大電壓保護頻段,< 1.00 的值將縮小電壓保護頻段。

VR Configuration(VR 設定)

IA AC Loadline(IA AC 負載線路)

可透過 AC 負載線路調整標稱 CPU VID 電壓。AC 負載線路越高,VID 就越高,尤其是高頻率或重負載。AC 負載線路以 mOhm 為單位。範圍是 $0-20.00 \circ 0 = AUTO/HW$ 預設值。

IA DC Loadline(IA DC 負載線路)

可透過 DC 負載線路調整 CPU 進行的功率計算。 DC 負載線路以 mOhm 為單位。範圍是 $0-20.00 \circ 0 = AUTO/HW$ 預設值。

Save User Default(儲存使用者預設值)

鍵入設定檔名稱,然後按 Enter 將您的設定儲存為使用者預設值。

Load User Default(載入使用者預設値)

載入先前儲存的使用者預設值。

Save User UEFI Setup Profile to Disk(將使用者 UEFI 設定檔儲存至磁碟)

協助您將目前的 UEFI 設定儲存至磁碟,以作為使用者設定檔。

Load User UEFI Setup Profile from Disk(從磁碟載入使用者 UEFI 設定檔)

您可以從磁碟載入先前儲存的設定檔。

3.4 Advanced(進階)畫面

在此章節中,您可以設定下列項目:CPU 設定(CPU Configuration)、Chipset Configuration(晶片組設定)、Storage Configuration(儲存裝置設定)、Super IO 設定(Super IO Configuration)、ACPI Configuration(ACPI 設定)、USB Configuration(USB 設定)及 Trusted Computing(可信賴運算)。

在此部分中,設定錯誤數值會造成系統故障。

UEFI Setup Style(UEFI 設定樣式)

讓您選擇進入 UEFI 設定公用程式時的預設模式。

設定選項:[Easy Mode(簡易模式)] [Advanced Mode(進階模式)]

Active Page on Entry(進入使用中頁面)

讓您選擇進入 UEFI 設定公用程式時的預設頁面。

設定選項: [My Favorite(常用項目)] [Main(主要)] [OC Tweaker] [Advanced(進階)] [Tool(工具)] [H/W Monitor(硬體監視器)] [Security(安全性)] [Boot(開機)] [Exit(退出)]

Full HD UFFI

[Auto(自動)]

選擇 [自動] 時,如果顯示器支援 Full HD 解析度,則會將解析度設為 1920 x 1080。 如果顯示器不支援 Full HD 解析度,則會將解析度設為 1024 x 768。

[Disabled(停用)]

選擇 [Disabled (停用)] 時,會直接將解析度設為 1024 x 768。

3.4.1 CPU Configuration (CPU 設定)

按 [Enter] 檢視 P-Core 資訊。

Processor E-Core Information (處理器 E-Core 資訊)

按 [Enter] 檢視 E-Core 資訊。

Intel Hyper Threading Technology(Intel 超執行緒技術)

Intel 超執行緒技術允許多個執行緒在各核心上執行,因此可改善整體執行緒軟體的效能。

Active Processor P-Cores(現用處理器 P-Core)

讓您選擇要在各處理器封裝中,啟用的核心數量。

CPU C States Support (CPU C 狀態支援)

啟用 CPU C States Support (CPU C 狀態支援)以省電。建議維持啟用 C3、C6 及 C7, 以獲得更佳的省電效率。

Enhanced Halt State (C1E) (增強暫停時態 (C1E))

啟用 Enhanced Halt State (C1E)(增強暫停時態 (C1E))降低耗電量。

CPU C6 State Support (CPU C6 狀態支援)

啟用 C6 深度睡眠狀態降低耗電量。

CPU C7 State Support (CPU C7 狀態支援)

啟用 C7 深度睡眠狀態以降低耗電量。

Package C State Support (封裝 C 狀態支援)

啟用 CPU、PCIe、記憶體、顯示卡 C 狀態支援維持省電。

CFG Lock (CFG 鎖定)

此項目可讓您停用或啟用 CFG 鎖定。

C6DRAM

當 CPU 處於 C6 狀態時, 啟用 / 停用移動 DRAM 內容移至 PRM 記憶體。

CPU Thermal Throttling(CPU 溫度控制)

啟用 CPU 內部溫度控制機制,防止 CPU 過熱。

Intel AVX/AVX2

啟用 / 停用 Intel AVX 和 AVX2 指示。這僅適用於大核心。

Intel Virtualization Technology(Intel 虛擬化技術)

Intel 虛擬化技術允許平台在獨立磁碟分割中執行多個作業系統及應用程式,使單一電腦系統可像多部虛擬系統一樣使用。

Hardware Prefetcher (硬體預擷取)

自動預擷取處理器的資料及代碼。啟用可獲得更佳效能。

Adjacent Cache Line Prefetch (鄰近快取線預擷取)

擷取目前要求的快取線時,自動預擷取後續快取線。 啟用可獲得更佳效能。

Legacy Game Compatibility Mode(舊版遊戲相容性模式)

啟用時,按 Scroll Lock 鍵切換 Efficient 核心,停駐時 Scroll Lock LED 亮起,未停駐時 LED 熄滅。

3.4.2 Chipset Configuration (晶片組設定)

Primary Graphics Adapter(主要顯示卡)

選擇丰要 VGA。

Above 4G Decoding(大於 4G 解碼)

啟用/停用高於 4GB MemoryMappedIO BIOS 指派。口徑大小設為 2048MB 時,會自動啟用此項目。

C.A.M(智慧存取記憶體)

若系統具有 Resizable BAR 功能的 PCIe 裝置,請使用此選項啟用或停用 Resizable BAR 支援(僅適用於支援 64 位元 PCI 解碼的系統)。

VT-d

Intel® Virtualization Technology for Directed I/O 可協助您的虛擬電腦顯示器改善應用程式相容性及可靠性,提升硬體的使用效率,並提供進一步的管理能力、安全性、隔離及 I/O 效能。

SR-IOV Support(SR-IOV 支援)

如果系統有具 SR-IOV 功能的 PCIe 裝置,則此選項啟用或停用單根 IO 虛擬化支援。

DMI ASPM Support (DMI 連結速度)

設定 DMI 插槽連結速度。自動模式針對超頻最佳化。

PCIE1 Link Speed (PCIE1 連結速度)

設定 PCIE1 插槽連結速度。自動模式針對超頻最佳化。

PCIE2 Link Speed (PCIE2 連結速度)

設定 PCIE2 插槽連結速度。自動模式針對超頻最佳化。

PCI Express Native Control (PCI Express 原生控制)

選擇啟用可加強 OS 中的 PCI Express 省電效果。

PCH PCIE ASPM Support (PCH PCIE ASPM 支援)

此選項可啟用/停用所有 PCH PCIE 裝置的 ASPM 支援。

DMI ASPM Support (DMI ASPM 支援)

此選項可啟用/停用 DMI 連結 CPU 端的 ASPM 控制。

PCH DMI ASPM Support (PCH DMI ASPM 支援)

此選項可啟用/停用所有 PCH DMI 裝置的 ASPM 支援。

Share Memory (共用記憶體)

設定系統開機時配置在整合式圖形處理器的記憶體大小。

IGPU Multi-Monitor(IGPU 多重監控)

在安裝外部顯示卡後選擇停用可停用整合式圖形。選取啟用後,即可隨時啟用內建圖 形處理器。

Realtek 2.5G Ethernet Controller (Realtek 2.5G 乙太網路控制器)

啟用或停用板載網路介面控制器。

Onboard HD Audio(板載 HD 音訊)

啟用 / 停用板載 HD 音訊。設為「Auto (自動)」即可啟用板載 HD 音訊,而當安裝音效卡後將自動停用。

前面板

啟用 / 停用前面板 HD 音訊。

Onboard HDMI HD Audio(板載 HDMI HD 音訊)

啟用板載數位輸出的音訊。

Onboard WAN Device(板載 WAN 裝置)(H610M-X D5 Gen5 WiFi)

讓您啟用或停用板載 WAN 裝置。

Deep Sleep (深沈睡眠)

設定深沈睡眠模式,在電腦關閉時節省電源。建議停用深沈睡眠,以獲得更好的系統 相容性和穩定性。

Restore on AC/Power Loss (還原 AC/ 功率損耗)

選擇停電後的電源狀態。若選擇 [Power Off(關閉電源)],電源將在恢復電力後維持關閉。若選擇 [Power On (開啟電源)],系統將在恢復電力時開始開機。

GNA Device (GNA 裝置)

讓您啟用或停用板載 SA GNA 裝置。

3.4.3 Storage Configuration(儲存裝置設定)

SATA Controller(s) (SATA 控制器)

啟用/停用 SATA 控制器。

SATA Aggressive Link Power Management(SATA 積極性連結電源管理)

SATA 積極性連結電源管理允許 SATA 裝置在無動作期間進入低電源狀態以節省電力。 僅 AHCI 模式支援此功能。

Hard Disk S.M.A.R.T. (硬碟 S.M.A.R.T.)

S.M.A.R.T 代表自我監控、分析及報告技術。這是一套供電腦硬碟機偵測及報告各種可靠性指標的監控系統。

3.4.4 Super IO Configuration(Super IO 設定)

PS2 Y-Cable (PS2 Y 型線)

啟用 PS2 Y 型線、或將此選項設為自動。

3.4.5 ACPI Configuration(ACPI 設定)

Suspend to RAM(載入到 RAM)

建議選擇自動,以節省 ACPI S3 的電力。

PS/2 Keyboard S4/S5 Wakeup Support(PS/2 鍵盤 S4/S5 喚醒支援)

允許在 S4/S5 下,透過 PS/2 鍵盤喚醒系統。

PCIE Devices Power On(PCIE 裝置開機)

允許由 PCIE 裝置喚醒系統及啟用網路喚醒。

RTC Alarm Power On(定時開機)

允許由真實時間鬧鈴喚醒系統。設為「By OS」即可由您的作業系統操控。

USB Keyboard/Remote Power On(USB 鍵盤/遙控開機)

允許由 USB 鍵盤或遙控器喚醒系統。

USB Mouse Power On(USB 滑鼠開機)

允許由 USB 滑鼠喚醒系統。

3.4.6 USB Configuration (USB 設定)

Legacy USB Support(舊型 USB 支援)

啟用舊型 USB 支援。自動選項會在未連接 USB 裝置的情況下停用舊版支援。停用選項會使 USB 裝置僅適用於 EFI 應用程式。

XHCI Hand-off(XHCI 遞交)

這是不支援 XHCI 遞交的 OS 解決方法。應透過 XHCI 驅動程式宣告 XHCI 所有權變更。

3.4.7 Trusted Computing(可信賴運算)

注意:選項因連接的 TPM 模組版本而異。

Security Device Support(安全性裝置支援)

使用此項目啟用或停用對安全性裝置的 BIOS 支援。作業系統不會顯示安全性裝置。 TCG EFI 通訊協定及 INT1A 介面將無法使用。

Active PCR banks(使用中 PCR 記憶庫)

此項目顯示使用中 PCR 記憶庫。

Available PCR Banks(可用的 PCR 記憶庫)

此項目顯示可用的 PCR 記憶庫。

SHA256 PCR Bank(SHA256 PCR 記憶庫)

使用此項目可啟用或停用 SHA256 PCR 記憶庫。

SHA384 PCR Bank (SHA384 PCR 記憶庫)

使用此項目啟用或停用 SHA384 PCR 記憶庫。

SM3_256 PCR Bank (SM3_256 PCR 記憶庫)

使用此項目啟用或停用 SM3_256 PCR 記憶庫。

Pending Operation(擱置操作)

為安全裝置排程操作。

注意:您的電腦將在重新啟動時重開機以變更裝置狀態。

Platform Hierarchy (平台階層)

使用此項目可啟用或停用平台階層。

Storage Hierarchy (儲存階層)

使用此項目可啟用或停用儲存階層。

Endorsement Hierarchy (簽署階層)

使用此項目可啟用或停用簽署階層。

Physical Presence Spec version(實體規格版本)

選擇此項目可告知作業系統支援 PPI 規格版本 1.2 或 1.3。請注意,部分 HCK 測試可能不支援版本 1.3。

TPM 2.0 InterfaceType

選擇 TPM 2.0 裝置的通訊介面。

Device Select(裝置選擇)

使用此項目可選擇要支援的 TPM 裝置。TPM 1.2 將限制 TPM 1.2 裝置的支援。TPM 2.0 將限制 TPM 2.0 裝置的支援。自動將支援 TPM 2.0 裝置的預設設定。若找不到 TPM 2.0 裝置,將列舉出 TPM 1.2 裝置。

3.5 Tools (工具)

SSD Secure Erase Tool(SSD 安全清除工具)

所有列出的 SSD 都支援安全清除功能。

NVME Sanitization Tool(NVME 清理工具)

清理 SSD 後,所有使用者資料將在 SSD 上永久銷毀,且無法復原。

Auto Driver Installer

讓您自動下載並安裝所有必要的驅動程式。

[Enabled(啟用)]

選擇此項目以啟用 Auto Driver Installer 工具。啟用時,在可存取網際網路的情況下進入 Windows 後,Auto Driver Installer 工具將自動出現。

[Disabled (停用)]

選擇此項目以停用 Auto Driver Installer 工具。

Instant Flash

將 UEFI 檔案儲存在 USB 儲存裝置中,然後執行 Instant Flash 以更新您的 UEFI。請注 意,USB 儲存裝置必須是 FAT32/16/12 檔案系統。

3.6 Hardware Health Event Monitoring(硬體狀態監控) 畫面

本章節提供您監控系統硬體狀態的資訊,其中包括 CPU temperature(CPU 溫度)、Motherboard Temperature(主機板溫度)、Fan Speed(風扇速度)及 Voltage(電壓參數)。

Fan Tuning (風扇調整)

偵測系統中的最低風扇速度。

Fan-Tastic Tuning(Fan-Tastic 調整)

選擇適用風扇的風扇模式,或選擇 Customize(自訂)設定 5 CPU 溫度,並為各溫度 指定個別風扇速度。

CPU Fan 1 Setting (CPU 風扇 1 設定)

選擇適用 CPU 風扇 1 的風扇模式,或選擇 Customize(自訂)設定 5 CPU 溫度,並為各溫度指定個別風扇速度。

CPU Fan 1 Step Up(CPU 風扇 1 增速)

設定 CPU 風扇 1 增速的值。

CPU Fan 1 Step Down(CPU 風扇 1 降速)

設定 CPU 風扇 1 降速的值。

CPU_FAN1/W_PUMP Switch (CPU_FAN1/W_PUMP 開關)

選擇機殼風扇1或水冷幫浦模式。

Chassis Fan 1 Control Mode (機殼風扇 1 控制模式)

為機殼風扇 1 選擇 PWM 模式或 DC 模式。

Chassis Fan 1 Setting(機殼風扇 1 設定)

選擇適用機殼風扇 1 的風扇模式,或選擇 Customize(自訂)設定 5 CPU 溫度,並為各溫度指定個別風扇速度。

Chassis Fan 1 Temp Source (機殼風扇 1 溫度來源)

為機殼風扇1選擇風扇溫度來源。

Chassis Fan 1 Step Up (機殼風扇 1 增速)

設定機殼風扇1增速的值。

Chassis Fan 1 Step Down (機殼風扇 1 降速)

設定機殼風扇1降速的值。

Case Open Feature (機殼開啓功能)

啟用或停用機殼開啟功能。

3.7 Security (安全) 畫面

在本章節中,您可設定或變更系統的監督員/使用者密碼。您也可清除使用者密碼。

Supervisor Password (監督員密碼)

設定或變更管理員帳戶密碼。只有管理員有權限變更 UEFI 設定公用程式中的設定。 在此項目中留白並按下 Enter 即可移除密碼。

User Password(使用者密碼)

設定或變更使用者帳戶密碼。使用者無法在 UEFI 設定公用程式中變更設定。在此項目中留白並按下 Enter 即可移除密碼。

Secure Boot(安全開機)

使用此項目啟用或停用對安全開機的支援。

Intel(R) Platform Trust Technology

啟用/停用 Intel PTT 功能。[Enabled(啟用)] 啟用 ME 中的 Intel PTT。[Disabled(停用)] 停用 ME 中的 Intel PTT。使用獨立的 TPM 模組。

3.8 Boot (開機) 畫面

本章節顯示系統上供您設定開機設定與開機優先順序的可用裝置。

Fast Boot (快速開機)

快速開機可將電腦的開機時間降至最短。在快速模式中,您無法從 USB 儲存裝置開機。如果使用外部顯示卡,VBIOS 必須支援 UEFI GOP。請注意,由於 Ultra Fast (超快速)模式的開機速度極快,所以進入本 UEFI 設定公用程式的唯一方式為清除 CMOS 或在 Windows 中執行 UEFI 公用程式重新啟動。

Boot From Onboard LAN(從板載 LAN 開機)

允許由板載 LAN 喚醒系統。

Setup Prompt Timeout (設定提示逾時)

設定等待 UEFI 設定公用程式的秒數。

Bootup Num-Lock (開機後的數字鎖定鍵狀態)

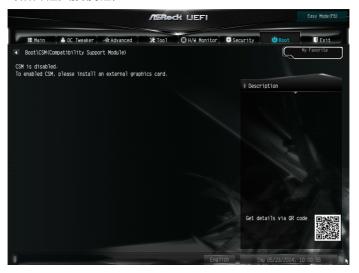
選擇系統開機時 Num Lock 是否應開啟或關閉。

Boot Beep(開機嗶聲)

選擇系統開機時,開機嗶聲是否應開啟或關閉。請注意,需配備蜂鳴器。

Full Screen Logo(全螢幕標誌)

啟用可顯示開機標誌,或者停用可顯示正常 POST 訊息。


AddOn ROM Display (附件軟體顯示)

若已啟用 Full Screen Logo (全螢幕標誌), 啟用 AddOn ROM Display (附件軟體顯示)可查看 AddOn ROM 訊息或設定 AddOn ROM。停用快速開機速度。

Boot Failure Guard Message (開機失敗防護訊息)

若電腦多次無法開機,系統將自動還原回預設值。

CSM (相容性支援模組)

CSM

啟用可啟動相容性支援模組。除非您正在執行 WHCK 測試,否則請勿停用。

Launch PXE OpROM Policy(啓動 PXE OpROM 原則)

僅選擇 UEFI 以執行僅支援 UEFI 選項的 ROM。僅選擇 Legacy(舊型),執行僅支援舊型選項的 ROM。選擇 Do not launch(不啟動),以不執行舊型及 UEFI 選項的 ROM。

Launch Storage OpROM Policy(啓動儲存 OpROM 原則)

僅選擇 UEFI 以執行僅支援 UEFI 選項的 ROM。僅選擇 Legacy(舊型),執行僅支援舊型選項的 ROM。選擇 Do not launch(不啟動),以不執行舊型及 UEFI 選項的 ROM。

Other PCI Device ROM Priority(其他 PCI 裝置 ROM 優先順序)

適用於網路以外的 PCI 裝置。大量儲存裝置或視訊定義要啟動的 OpROM。

3.9 Exit (結束) 書面

Save Changes and Exit (儲存變更並結束)

當您選擇此選項後,將彈出下列訊息「Save configuration changes and exit setup?(是否儲存設定變更並結束設定?)」。選擇 [OK(確定)] 儲存變更並結束 UEFI 設定公用程式。

Discard Changes and Exit(捨棄變更並結束)

當您選擇此選項後,將彈出下列訊息「Discard changes and exit setup?(是否捨棄變更並結束設定?)」。選擇 [OK(確定)] 結束 UEFI 設定公用程式,且不儲存任何變更。

Discard Changes(捨棄變更)

當您選擇此選項後,將彈出下列訊息「Discard changes?(是否捨棄變更?)」。 選擇 [OK(確定)] 捨棄所有變更。

Load UEFI Defaults(載入 UEFI 預設値)

為所有選項載入 UEFI 預設值。此操作可使用 F9 鍵。

Launch EFI Shell from filesystem device(在檔案系統裝置中啓動 EFI Shell)

嘗試從可用的檔案系統裝置的其中之一, 啟動 EFI Shell 應用程式 (Shell.efi)。